This is the 2D object detection benchmark. We annotate over 2.23M object boxes for about 463K video frames. The benchmark uses 2D bounding box overlapping rate to compute precision-recall curves for calculating the AP, mAP75, AP50, mAP75, AP_S, AP_M, and AP_L metrics in various pedestrian categories.
ID | Method | Year | Code | AP | AP50 | mAP75 | AP_S | AP_M | AP_L | Runtime | Environment |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | FasterRCNN | 2015 | Link | 45.4 % | 71.5 % | 55.2 % | 49.1 % | 47.3 % | 37.6 % | ... | RTX 3090 |
2 | CornerNet | 2018 | Link | 37.8 % | 54.9 % | 43.9 % | 31.7 % | 43.6 % | 25.2 % | ... | RTX 3090 |
3 | CascadeRPN | 2019 | Link | 44.8 % | 69.9 % | 51.3 % | 44.3 % | 46.0 % | 42.4 % | ... | RTX 3090 |
4 | DiffusionDet | 2023 | Link | 52.7 % | 76.7 % | 60.7 % | 46.3 % | 54.4 % | 51.6 % | ... | RTX 3090 |
5 | YOLOv8 | 2023 | Link | 50.6 % | 74.8 % | 59.0 % | 45.5 % | 51.6 % | 51.2 % | ... | RTX 3090 |
6 | YOLOv5s | 2021 | Link | 52.9 % | 78.4 % | 63.2 % | 45.9 % | 54.4 % | 42.1 % | ... | RTX 3090 |
Click here to submit your results:
Submit