Object Detection Evaluation

Object Detection Banner

This is the 2D object detection benchmark. We annotate over 2.23M object boxes for about 463K video frames. The benchmark uses 2D bounding box overlapping rate to compute precision-recall curves for calculating the AP, mAP75, AP50, mAP75, AP_S, AP_M, and AP_L metrics in various pedestrian categories.

Leaderboard

ID Method Year Code AP AP50 mAP75 AP_S AP_M AP_L Runtime Environment
1 FasterRCNN 2015 Link 45.4 % 71.5 % 55.2 % 49.1 % 47.3 % 37.6 % ... RTX 3090
2 CornerNet 2018 Link 37.8 % 54.9 % 43.9 % 31.7 % 43.6 % 25.2 % ... RTX 3090
3 CascadeRPN 2019 Link 44.8 % 69.9 % 51.3 % 44.3 % 46.0 % 42.4 % ... RTX 3090
4 DiffusionDet 2023 Link 52.7 % 76.7 % 60.7 % 46.3 % 54.4 % 51.6 % ... RTX 3090
5 YOLOv8 2023 Link 50.6 % 74.8 % 59.0 % 45.5 % 51.6 % 51.2 % ... RTX 3090
6 YOLOv5s 2021 Link 52.9 % 78.4 % 63.2 % 45.9 % 54.4 % 42.1 % ... RTX 3090

Submit Your Results

You can submit your metric values via the provided form. Furthermore, we would highly appreciate your contribution with clear links to relevant articles and code for more in-depth analysis.

Click here to submit your results:

Submit